
Karasi (2026) Temporal Speedup & Model Architectures

What Temporal Speedup Reveals About
Frontier Model Architectures

Evidence from Multi-Model Debugging Experiments

Anand Karasi
DisruptWithAI Research · San Jose, CA

https://disruptwithai.com

January 2026

Abstract

We present a cross-model analysis of temporal speedup dynamics observed during a con-
trolled debugging experiment across three frontier language models (GPT-5.2, Claude Opus
4.5, Gemini 3 Flash). While all models achieve near-perfect accuracy (≥99.6%) on 280 stan-
dardized Python debugging tasks, their latency response to accumulated temporal context
diverges dramatically: GPT-5.2 accelerates by 6.7%, Opus 4.5 remains flat (+0.2%), and
Gemini 3 Flash decelerates by 17.0%. We argue that this divergence constitutes a behavioral
fingerprint of each model’s internal reasoning architecture—revealing three fundamentally
different inference strategies. We introduce the Capability Boundary Hypothesis and
the Context Utilization Spectrum as theoretical frameworks for predicting when tem-
poral intelligence helps, hurts, or has no effect. Our findings have direct implications for
the design of temporally-aware AI systems and challenge the assumption that more context
universally improves performance.

Keywords: temporal intelligence, language model architecture, in-context learning, debugging
automation, inference optimization, capability boundary

Contents

1 Introduction 2
1.1 Contributions . 2

2 Related Work 2
2.1 In-Context Learning . 2
2.2 Temporal Reasoning in AI . 2
2.3 Model Architecture Comparisons . 3

3 Experimental Design 3
3.1 Task Battery . 3
3.2 Conditions . 3
3.3 Models . 3

4 Results 3
4.1 Aggregate Performance . 3
4.2 Temporal Speedup Divergence . 4
4.3 Temporal Dynamics: Acceleration vs. Deceleration Curves 5

1

https://disruptwithai.com

Karasi (2026) Temporal Speedup & Model Architectures

5 What Temporal Speedup Reveals About Each Model 6
5.1 GPT-5.2: The Pattern Exploiter . 6
5.2 Opus 4.5: The Self-Sufficient Reasoner . 7
5.3 Gemini 3 Flash: The Deliberative Processor . 7

6 The Context Utilization Spectrum 7
6.1 Exploitative Models . 8
6.2 Invariant Models . 8
6.3 Susceptible Models . 8

7 The Capability Boundary Hypothesis 9

8 Practical Implications 10
8.1 For Model Developers . 10
8.2 For Researchers . 10

9 Limitations 10

10 Future Work 10

11 Conclusion 11

2

Karasi (2026) Temporal Speedup & Model Architectures

1 Introduction
The dominant paradigm in AI system design assumes that providing models with more rele-
vant context improves performance. Retrieval-augmented generation (RAG), chain-of-thought
prompting, and few-shot exemplars all rest on this premise. But what happens when the context
is temporal—accumulated experience from sequential task execution—and the model is already
highly capable?

This paper examines a surprising finding from our temporal intelligence experiments: the
same temporal context that accelerates one frontier model actively degrades an-
other, while leaving a third entirely unaffected. This three-way divergence cannot be
explained by differences in model capability (all achieve ≥99.6% accuracy) or task difficulty
(all face identical tasks). Instead, it reveals fundamental architectural differences in how these
models process, prioritize, and utilize contextual information during inference.

We tested three frontier models—OpenAI GPT-5.2, Anthropic Claude Opus 4.5, and Google
Gemini 3 Flash—on 280 Python debugging tasks under two conditions: stateless (no accumu-
lated context) and temporal (accumulated debugging patterns carried forward). The results
expose what we call the Context Utilization Spectrum: a continuum from context-as-
accelerant (GPT-5.2) to context-as-noise (Gemini 3 Flash), with context-as-irrelevant (Opus
4.5) in between.

1.1 Contributions

1. Empirical evidence that temporal context produces model-dependent effects spanning a
23.7 percentage-point range (from +6.7% to −17.0%) across frontier models of comparable
capability.

2. The Capability Boundary Hypothesis: temporal intelligence provides maximum benefit
at the boundary of a model’s capability, and is redundant for models operating well within
their frontier.

3. The Context Utilization Spectrum: a framework classifying models by their inference
response to accumulated context—exploitative, invariant, or susceptible.

4. Architectural inferences about the internal reasoning strategies of three frontier models,
derived purely from behavioral speedup signatures.

5. Practical guidelines for practitioners building temporally-aware AI systems.

2 Related Work

2.1 In-Context Learning

Brown et al. (2020) demonstrated that large language models can learn from examples provided
in-context, a phenomenon later formalized by Xie et al. (2022) as implicit Bayesian inference.
Our work extends this to sequential in-context learning, where the context is not curated ex-
amples but accumulated operational experience.

2.2 Temporal Reasoning in AI

Temporal reasoning has been studied primarily in the context of event ordering, temporal logic,
and planning (Zhou et al., 2019; Vashishtha et al., 2020). Our notion of “temporal intelligence”
differs: we examine whether models can leverage their own past performance history to improve
future performance—a form of meta-cognitive temporal awareness.

3

Karasi (2026) Temporal Speedup & Model Architectures

2.3 Model Architecture Comparisons

Comparative evaluations of frontier models typically focus on accuracy benchmarks (Zheng et
al., 2023; Chiang et al., 2024). Our contribution is orthogonal: we hold accuracy approximately
constant and examine latency dynamics as a window into architectural differences.

3 Experimental Design

3.1 Task Battery

We constructed 280 Python debugging tasks across three difficulty tiers:

• Easy (100 tasks): Single-bug programs—off-by-one errors, null reference failures, type
coercion, missing returns, incorrect boolean logic, string immutability violations. Each 10–
25 lines with 3–5 test cases.

• Medium (100 tasks): Python-specific behavioral quirks—mutable default arguments, clo-
sure late-binding, modify-while-iterating, dictionary iteration errors, bare exception han-
dling, infinite recursion. Each 15–40 lines with 4–7 test cases.

• Hard (80 tasks): Multi-concept programs involving concurrency, data structures, and
systems—thread safety violations, graph traversal bugs, BST insertion errors, LRU cache
eviction, deadlock scenarios, async concurrency patterns. Each 30–80 lines with 5–10 test
cases.

Tasks cycle through 10 bug patterns per difficulty level, creating deliberate opportunities
for temporal pattern recognition.

3.2 Conditions

STATELESS (Control): Each task presented independently with no context from previous
tasks.

TEMPORAL (Treatment): Tasks presented sequentially with accumulated pattern con-
text. After each solved task, a summary of observed bug types and successful fix strategies is
appended to subsequent prompts.

3.3 Models

Model Provider Optimized For Access
GPT-5.2 OpenAI General reasoning, speed API
Claude Opus 4.5 Anthropic Deep reasoning, safety API
Gemini 3 Flash Google Speed, efficiency API

Table 1: Models tested. All accessed via production APIs with default parameters.

4 Results

4.1 Aggregate Performance

All three models achieve near-perfect accuracy (≥99.6%), confirming the task battery falls
within all models’ capability frontiers.

4

Karasi (2026) Temporal Speedup & Model Architectures

Model Cond. Pass Rate Avg (ms) Easy Med Hard

GPT-5.2 Stateless 100.0% 1,236 1,067 1,100 1,616
GPT-5.2 Temporal 100.0% 1,153 931 955 1,679

Opus 4.5 Stateless 100.0% 2,153 1,933 1,994 2,626
Opus 4.5 Temporal 99.6% 2,149 1,926 1,979 2,637

Gemini Flash Stateless 100.0% 6,884 2,547 4,118 15,760
Gemini Flash Temporal 100.0% 8,056 2,460 4,908 18,986

Table 2: Aggregate performance across conditions and difficulty levels.

4.2 Temporal Speedup Divergence

The central finding: identical temporal context produces dramatically different effects.

Figure 1: Overall temporal speedup by model. GPT-5.2 accelerates (+6.7%), Opus 4.5 is flat
(+0.2%), and Gemini 3 Flash decelerates (−17.0%). The 23.7pp spread reveals fundamentally
different context utilization strategies.

Model Easy ∆ Medium ∆ Hard ∆ Overall ∆

GPT-5.2 +12.7% +13.2% −3.9% +6.7%
Opus 4.5 +0.4% +0.8% −0.4% +0.2%
Gemini 3 Flash +3.4% −19.2% −20.5% −17.0%

Table 3: Temporal speedup by task difficulty. Positive = faster with temporal context.

5

Karasi (2026) Temporal Speedup & Model Architectures

Figure 2: Temporal speedup decomposed by difficulty. GPT-5.2 benefits on easy/medium but
not hard tasks. Gemini 3 Flash is penalized on medium/hard tasks. Opus 4.5 is uniformly flat.

4.3 Temporal Dynamics: Acceleration vs. Deceleration Curves

The most revealing data comes from batch-level analysis, exposing how temporal effects evolve
over time.

Figure 3: Batch-level temporal dynamics. Left: GPT-5.2 shows compounding acceleration,
peaking at +31.9%. Right: Gemini 3 Flash shows compounding deceleration, reaching −46.1%.
These mirror-image trajectories reveal fundamentally opposed context processing strategies.

6

Karasi (2026) Temporal Speedup & Model Architectures

Figure 4: Absolute latency breakdown by difficulty and condition. Note the scale difference:
Gemini 3 Flash’s hard-task latency (15–19s) dwarfs GPT-5.2’s (1.6–1.7s), revealing fundamen-
tally different inference strategies despite comparable accuracy.

5 What Temporal Speedup Reveals About Each Model
The temporal speedup signature acts as a behavioral X-ray of each model’s inference archi-
tecture. Since we control the input (identical tasks), the output (identical accuracy), and the
intervention (identical temporal context), any divergence in latency must originate from how
the model processes and utilizes the temporal context internally.

5.1 GPT-5.2: The Pattern Exploiter

Signature: +6.7% overall, compounding from +12.3% to +31.9% over time.

1. Efficient in-context pattern matching. GPT-5.2 treats accumulated temporal context
as a lookup table—shortcutting reasoning on recognized bug types rather than deriving fixes
from first principles.

2. Sublinear context processing cost. Despite monotonically growing context, speedup
increases over time, implying efficient selective attention over long contexts.

3. Two-stage inference strategy. The +12.7%/+13.2% speedup on easy/medium vs. −3.9%
on hard tasks reveals a match-first, reason-second approach. Pattern matching suffices for
familiar bugs; hard tasks incur slight overhead from the failed matching step.

4. Compounding returns. The 31.9% peak speedup at batch 161–180 is consistent with the
temporal intelligence hypothesis: accumulated knowledge compounds over time.

Architectural inference: GPT-5.2 likely employs an inference strategy that first checks
context for matching patterns, then falls back to full reasoning only when no match is found—
analogous to a cache-first lookup with parametric fallback.

7

Karasi (2026) Temporal Speedup & Model Architectures

5.2 Opus 4.5: The Self-Sufficient Reasoner

Signature: +0.2% overall, flat across all difficulties (±0.8%).

1. Context compression/deprioritization. The model assigns near-zero attention weight
to context that provides no novel information beyond training data.

2. Ceiling effect. Every bug pattern is already in Opus 4.5’s parametric knowledge with high
confidence. Temporal context is informationally redundant—like giving a native speaker a
dictionary.

3. Robust, deterministic inference. Near-zero variance (±4ms) across 280 tasks suggests a
deep, fixed reasoning pathway unperturbed by contextual additions.

4. No attention dilution penalty. Unlike Gemini Flash, Opus 4.5 processes additional
context without computational overhead—a sign of sophisticated attention management.

Architectural inference: Opus 4.5 employs a reasoning-first strategy from deep para-
metric knowledge, consulting context only when parametric knowledge is insufficient. This
prioritizes reliability over contextual adaptation.

5.3 Gemini 3 Flash: The Deliberative Processor

Signature: −17.0% overall, compounding from −1.3% to −46.1% over time.

1. Obligatory context processing. Cannot efficiently ignore temporal context; every token
is processed through the full reasoning pipeline.

2. “Thinking” interference. Temporal context triggers additional deliberation steps, partic-
ularly on medium/hard tasks where extended thinking is already engaged.

3. Superlinear context scaling. The progression −1.3% → −16% → −30% → −46% suggests
combinatorial interactions between accumulated patterns.

4. Speed optimization fragility. The “Flash” speed advantage erodes with context length—
the architecture is optimized for short prompts.

5. Difficulty-proportional vulnerability. Temporal overhead interacts multiplicatively with
task complexity (+3.4% easy vs. −20.5% hard).

Architectural inference: Gemini 3 Flash employs a unified reasoning pipeline that cannot
segregate temporal context from task context. The “Flash” speed optimization may involve
fewer attention layers, explaining the inability to selectively attend to relevant context subsets.

6 The Context Utilization Spectrum
Synthesizing the three behavioral signatures, we propose the Context Utilization Spectrum:

8

Karasi (2026) Temporal Speedup & Model Architectures

Figure 5: The Context Utilization Spectrum. Models are classified by their inference response to
accumulated temporal context: exploitative (context accelerates), invariant (context ignored),
or susceptible (context interferes).

6.1 Exploitative Models

Exploitative models (GPT-5.2) treat temporal context as a performance optimization. Speedup
compounds over time. Benefits concentrated on pattern-matchable tasks. Optimal for systems
where temporal context can be curated.

6.2 Invariant Models

Invariant models (Opus 4.5) are unaffected by temporal context because parametric knowledge
already encompasses relevant patterns. Consistent, predictable performance. Optimal where
reliability trumps context-dependent speedup.

6.3 Susceptible Models

Susceptible models (Gemini 3 Flash) experience degradation from temporal context. Slowdown
compounds over time. Require aggressive context pruning or windowing to mitigate.

9

Karasi (2026) Temporal Speedup & Model Architectures

7 The Capability Boundary Hypothesis

Figure 6: The Capability Boundary Hypothesis. Temporal intelligence provides maximum
benefit at the boundary of model capability—where tasks are difficult enough to benefit from
accumulated experience but not beyond the model’s reach.

We propose: Temporal intelligence provides maximum benefit when applied to tasks
at the boundary of a model’s capability—difficult enough that the model benefits from
prior experience, but not so far beyond capability that no amount of context helps.

Evidence:

• GPT-5.2’s largest speedup (−31.9%) occurs on medium tasks in later batches—exactly at
the intersection of accumulated knowledge and moderate difficulty.

• All models achieve ≥99.6% accuracy, suggesting this task set is within all models’ capability
frontiers, limiting potential for accuracy improvement.

• On a harder task set (40–70% baseline accuracy), we predict Opus 4.5 would begin showing
positive temporal effects as tasks approach its capability boundary.

10

Karasi (2026) Temporal Speedup & Model Architectures

8 Practical Implications

Decision Recommendation

Whether to add temporal
context

Profile your specific model first. Do not assume benefits
transfer across models.

Context window manage-
ment

Exploitative models: grow freely. Susceptible: aggressive
pruning (sliding window).

Model selection If temporal awareness is core, select exploitative models.
Task routing Enable temporal context for pattern-matchable tasks; dis-

able for novel reasoning.

Table 4: Practical guidelines for practitioners building temporally-aware AI systems.

8.1 For Model Developers

• Exploitative models could benefit from explicit temporal attention mechanisms.

• Invariant models could add context-novelty detectors that activate temporal attention
only for genuinely new information.

• Susceptible models need architectural changes to support selective context gating.

8.2 For Researchers

Temporal speedup analysis provides a non-invasive method for inferring architectural
properties of black-box models. By varying context and measuring latency, researchers can
infer context scaling behavior, selective attention capabilities, and reasoning strategy sensitivity.

9 Limitations
1. Three models. A broader survey would strengthen the spectrum framework.

2. API latency confounds. Measured latency includes network/queuing time. Relative
comparisons remain valid.

3. Accuracy ceiling. The ≥99.6% ceiling prevents observing temporal effects on correctness.

4. Temporal context simplicity. Richer representations might produce different effects.

5. Single domain. Python debugging is narrow; cross-domain validation needed.

10 Future Work

1. Harder task batteries producing 40–70% baseline accuracy to test accuracy improvement
predictions.

2. Broader model survey spanning 8–10 architectures (open-source and commercial).

3. Context ablations varying richness from keywords to full solution traces.

4. Cross-domain transfer testing whether speedup signatures persist across debugging, math,
and NL tasks.

5. Longitudinal studies across thousands of tasks to characterize saturation points.

11

Karasi (2026) Temporal Speedup & Model Architectures

11 Conclusion
The central insight of this paper is that temporal context is not a neutral input—it is an
active intervention whose effects are mediated by model architecture. The same accumulated
debugging patterns that make GPT-5.2 31.9% faster make Gemini 3 Flash 46.1% slower, while
leaving Opus 4.5 entirely unaffected.

These three responses—exploitation, invariance, and susceptibility—define the Context Uti-
lization Spectrum. The Capability Boundary Hypothesis further predicts that temporal intelli-
gence benefits are maximized at the frontier of model capability.

For practitioners, the message is clear: temporal intelligence is not a universal up-
grade. It is a model-specific, task-specific, and architecture-specific capability that must be
profiled, tested, and monitored for each deployment context. The era of “more context is al-
ways better” is over. The question is no longer whether to provide context, but which model
can actually use it.

References

[1] Brown, T.B. et al. (2020). Language models are few-shot learners. NeurIPS 2020.

[2] Chiang, W.-L. et al. (2024). Chatbot Arena: An open platform for evaluating LLMs by
human preference. ICML 2024.

[3] Vashishtha, S. et al. (2020). Temporal reasoning in natural language inference. Findings of
EMNLP 2020.

[4] Xie, S.M. et al. (2022). An explanation of in-context learning as implicit Bayesian inference.
ICLR 2022.

[5] Zheng, L. et al. (2023). Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.
NeurIPS 2023.

[6] Zhou, B. et al. (2019). Going on a diet: Translation as the teacher to enhance temporal
understanding. EMNLP 2019.

Correspondence: Anand Karasi, DisruptWithAI Research. https: // disruptwithai. com

12

https://disruptwithai.com

	Introduction
	Contributions

	Related Work
	In-Context Learning
	Temporal Reasoning in AI
	Model Architecture Comparisons

	Experimental Design
	Task Battery
	Conditions
	Models

	Results
	Aggregate Performance
	Temporal Speedup Divergence
	Temporal Dynamics: Acceleration vs. Deceleration Curves

	What Temporal Speedup Reveals About Each Model
	GPT-5.2: The Pattern Exploiter
	Opus 4.5: The Self-Sufficient Reasoner
	Gemini 3 Flash: The Deliberative Processor

	The Context Utilization Spectrum
	Exploitative Models
	Invariant Models
	Susceptible Models

	The Capability Boundary Hypothesis
	Practical Implications
	For Model Developers
	For Researchers

	Limitations
	Future Work
	Conclusion

